Friday, June 17, 2011

Automatic Dualoutput Display


This circuit lights up ten bulbs sequentially, first in one direction and then in the opposite direction, thus presenting a nice visual effect. In this circuit, gates N1 and N2 form an oscillator. The output of this oscillator is used as a clock for BCD up/down counter CD4510 (IC2). Depending on the logic state at its pin 10, the counter counts up or down. During count up operation, pin 7 of IC2 outputs an active low pulse on reaching the ninth count. Similarly, during countdown operation, you again get a low-going pulse at pin 7.



This terminal count output from pin 7, after inversion by gate N3, is connected to clock pin 14 of decade counter IC3 (CD4017) which is configured here as a toggle flip-flop by returning its Q2 output at pin 4 to reset pin 15. Thus output at pin 3 of IC3 goes to logic 1 and logic 0 state alternately at each terminal count of IC2. Initially, pin 3 (Q0) of IC3 is high and the counter is in count-up state. On reaching ninth count, pin 3 of IC3 goes low and as a result IC2 starts counting down. When the counter reaches 0 count, Q2 output of IC3 momentarily goes high to reset it, thus taking pin 3 to logic 1 state, and the cycle repeats. The BCD outputs of IC2 are connected o 1-of-10 decoder CD4028 (IC4). During count-up operation of IC2, the outputs of IC4 go logic high sequentially from Q0 to Q9 and thus trigger the triacs and lighting bulbs 1 through 10, one after the other. Thereafter, during count-down operation of IC2, the bulbs light in the reverse order, presenting a wonderful visual effect.

Automated Alarm Circuits

Two alarm circuits are presented here. One produces bird-chirping sound and the other British police siren tone. Fig. 1 shows the circuit of the birdchirping- sound alarm unit along with the circuit of the control unit. Fig. 2 shows the circuit of only the British police siren tone generator, which has to be integrated with the control circuit portion of Fig. 1 at points A and B to complete the circuit diagram of automated alarm. The control unit is built around ICs CD4047 and CD4027 (as shown on the left side of the dotted line in Fig. 1). As mentioned earlier, it is common to both the alarm circuits. IC CD4047 (IC1) is wired in positive-edge-triggering monostable multivibrator mode to set and reset IC CD4027 (IC2). The output pulse width of IC1 depends on the values of capacitor C2 and resistor R3 connected to its pins 1, 2 and 3.





Normally, when the door is closed, reed switch S1 is closed, transistor T1 conducts and the monostable multivibrator (IC1) remains in standby mode with ‘low’ output at pin 10. When the door is opened, reed witch S1 gets disconnected, T1 stops conducting and low-to-high pulse at pin8 of IC1 triggers the monostable and a short-duration positive pulse of about 10 seconds is available as Q output at pin 10. At the same time, complementary output Q goes low at pin 11. The output from IC1 is used to set and reset IC2. IC2 is a low-power, dual J-K master/ slave flip-flop having independent J, K, set, reset and clock inputs. The flip-flops change states on the positive-going transition of the clock pulses. IC2 is wired such that its Q output turns ‘high’ when reset pin 4 receives a high pulse. When set pin 7 receives a high pulse, Q output goes low and Q output goes high. This lights up LED2 and drives transistor T2 (BC548), which enables the alarm circuit. The output at point A is used to enable the alarm tone generator circuit (on the right side of the dotted line) consisting of two 555 timer ICs marked as IC3 and IC4. The R-C network determines the frequency of the sound produced. The triangular waveform of the astable multivibrator is taken out from the junction of pins 2 and 6 of IC3. This waveform is fed as the control voltage at pin 5 of IC4 through resistor R18. The output received from pin 3 of IC4 is fed to the base of transistor T3 to drive an 8-ohm loudspeaker (LS1), which generates the bird-chirping sound. For the chirping-sound alarm generator, assemble the circuit shown in Fig. 1 on a separate general-purpose PCB and enclose in a small box. And if you want an alarm circuit with British police siren tone, assemble the circuit shown in Fig. 2 on another generalpurpose PCB and connect it to points A and B of the control unit shown in Fig. 1 after removing the circuit on the right side of the dotted line. Use a 9V, 500mA standard adaptor to power the circuit. This circuit may be used as a security alarm in banks, households and motorcars.

Auto Reset Over/Under Voltage Cut-Out

This over/under voltage cut-out will save your costly electrical and electronic appliances from the adverse effects of very high and very low mains voltages. The circuit features auto reset and utilises easily available components. It makes use of the comparators available inside 555 timer ICs. Supply is tapped from different points of the power supply circuit for relay and control circuit operation to achieve reliability. Auto Reset Over/Under Voltage Cut-Out This over/under voltage cut-out will save your costly electrical and electronic appliances from the adverse effects of very high and very low mains voltages. The circuit features auto reset and utilises easily available components. It makes use of the comparators available inside 555 timer ICs. Supply is tapped from different points of the power supply circuit for relay and control circuit operation to achieve reliability. The circuit utilises comparator 2 for control while comparator 1 output (connected to reset pin R) is kept low by shorting pins 5 and 6 of 555 IC. The positive input pin of comparator 2 is at 1/3rd of Vcc voltage. Thus as long as negative input pin 2 is less positive than 1/3 Vcc, comparator 2 output is high and the internal flip-flop is set, i.e. its Q output (pin 3) is high. At the same time pin 7 is in high impedance state and LED connected to pin7 is therefore off. The output (at pin 3) reverses (goes low) when pin 2 is taken more positive than 1/3 Vcc. At the same time pin 7 goes low (as Q output of internal flip-flop is high) and the ED connected to pin 7 is lit.


Both timers (IC1 and IC2) are configured to function in the same fashion. Preset VR1 is adjusted for under voltage (say 160 volts) cut-out by observing that LED1 just lights up when mains voltage is slightly greater than 160V AC. At this setting the output at pin 3 of IC1 is low and transistor T1 is in cut-off state. As a result RESET pin 4 of IC2 is held high since it is connected to Vcc via 100 kilo-ohm resistor R4. Preset VR2 is adjusted for over voltage (say 270V AC) cut-out by observing that LED2 just extinguishes when the mains voltage is slightly less than 270V AC. With RESET pin 4 of IC2 high, the output pin 3 is also high. As a result transistor T2 conducts and energises relay RL1, connecting load to power supply via its N/O contacts. This is the situation as long as mains voltage is greater than 160V AC but less than 270V AC. When mains voltage goes beyond 270V AC, it causes output pin 3 of IC2 to go low and cut-off transistor T2 and de-energise relay RL1, in spite of RESET pin 4 still being high. When mains voltage goes below 160V AC, IC1’s pin 3 goes high and LED1 is extinguished. The high output at pin 3 results in conduction of transistor T1. As a result collector of transistor T1 as also RESET pin 4 of IC2 are pulled low. Thus output of IC2 goes low and transistor T2 does not conduct. As a result relay RL1 is de-energised, which causes load to be disconnected from the supply. When mains voltage again goes beyond 160V AC (but less than 270V AC) the relay again energises to connect the load to power supply.

AUTOMATIC EMERGENCY LIGHT




This emergency light has the following two advantages:
1. It turns on automatically when the mains power fails, so you
need not search it in the dark.
2. Its battery starts charging as soon as the mains resumes.
Operation of the circuit is quite straightforward. Mains supply is stepped down by transformer X1, rectified by a full-wave rectifier comprising diodes D1 and D2, filtered by capacitor C1 and fed to relay coil RL1. The relay energises to connect the battery to the charging circuit through its normally-opened (N/O) contacts. Freewheeling diode D3 acts as a spike buster for the relay. The charging circuit is built around npn transistor BD139 (T1). The transformer output is fed to the collector of transistor T1, which provides a fixed bias voltage of 6.8V to charge the battery. When the battery is fully charged, the battery voltage becomes equal to the breakdown voltage of the zener diode (ZD1). Zener diode ZD1 conducts to provide an alternative path for the current to ground and battery charging stops. When mains fails, relay RL1 de-energises. The battery now gets connected to the white LED array (comprising LED1 through LED6) through current-limiting resistor R2. The LEDs glow to light up the room. To increase the brightness in your room, you can increase the number of white LEDs after reducing the value of resistor R2 and also use a reflector assembly.